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The interplay of magnetic and superconducting fluctuations in two-dimensional systems with van Hove
singularities in the electronic spectrum is considered within the functional renormalization-group �fRG� ap-
proach. While the fRG flow has to be stopped at a certain minimal temperature TRG

min, we study temperature
dependence of magnetic and superconducting susceptibilities below TRG

min to obtain the crossover temperatures
to the regime with strong magnetic and superconducting fluctuations. Near half filling we obtain the largest
crossover temperature, corresponding to a regime with strong commensurate magnetic fluctuations, which is
replaced by a regime with strong incommensurate fluctuations further away from half filling. With further
decreasing density the system undergoes quantum phase transition from incommensurate to paramagnetic
phase. Similarly to results of Hertz-Moriya-Millis approach, the temperature dependence of the inverse �in-
commensurate� magnetic susceptibility at the magnetic quantum-critical point is found almost linear in
temperature.
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I. INTRODUCTION

The quantum-critical points �QCP� in itinerant magnets
have being investigated during long time. Moriya theory1

was first attempt to describe thermodynamic properties near
QCP. This theory was further developed within Hertz-Millis
renormalization-group approach.2 In more than two dimen-
sions Hertz-Moriya-Millis �HMM� approach predicts that the
magnetic transition temperature Tc depends on the distance �
to the QCP as Tc��z/�d+z−2�. In two-dimensional �2D� sys-
tems, the long-range magnetic order at finite temperatures is
prohibited according to the Mermin-Wagner theorem but the
quantum phase transition is accompanied by vanishing of the
temperature of the crossover to the regime with exponen-
tially large correlation length �renormalized-classical re-
gime�, T���. The applicability of HMM approach to mag-
netic systems was recently questioned because of expected
strong momenta and frequency dependence of the paramag-
non interaction vertices3 and possible nonanalytical depen-
dence of the magnetic susceptibility4 which arises due to
strong electron-paramagnon interaction.

Itinerant systems with van Hove singularities in the elec-
tronic spectrum have strong momentum dependence of inter-
action vertices due to peculiarity of the electronic dispersion,
and, therefore represent an interesting example for studying
the quantum-critical behavior. The competition of different
kinds of fluctuations, and even long-range orders is impor-
tant in the presence of van Hove singularities, which makes
formulation of effective boson-fermion theories rather com-
plicated. Studying the problem of quantum-critical behavior
of these systems in terms of fermionic degrees of freedom
may be helpful to obtain concentration dependence of the
crossover temperature and provide valuable information
about their magnetic properties near quantum-critical points.
In particular, fermionic approaches can treat naturally both,
�anti-� ferromagnetic and superconducting fluctuations,
which were considered to be important near magnetic quan-
tum phase transitions in systems with van Hove singularities
in the electronic spectrum.

The simplest mean-field analysis of the Hubbard model is
insufficient to study quantum-critical behavior; due to local-
ity of the Coulomb repulsion in this model it is also unable to
investigate the range of existence of unconventional �e.g., d-
or p-wave� superconducting order and introduction of the
nearest-neighbor �nn� interaction is required in this
approach.5 To study the competition of magnetism and su-
perconductivity in the Hubbard model, more sophisticated
approaches, e.g., cluster methods6,7 and functional
renormalization-group �fRG� approaches8–11 were used. The
fRG approaches are not limited by the system �cluster� size
and offer a possibility to study both, magnetic and supercon-
ducting fluctuations, as well as their interplay at weak and
intermediate coupling.

The fRG approaches were initially applied to the para-
magnetic nonsuperconducting �symmetric� phase of two-
dimensional systems to study the dominant type of fluctua-
tions in different regions of the phase diagram.8–11 Although
these approaches suffered from the divergence of vertices
and susceptibilities at low-enough temperatures near the
magnetic or superconducting instabilities, comparing suscep-
tibilities with respect to different types of order at the lowest
accessible temperature provided a possibility to deduce
instabilities in different regions of the phase diagram. In fact,
the temperature where the vertices and susceptibilities di-
verge in the one-loop approach can be identified with the
above discussed temperature T� of the crossover to the
“strong-coupling” regime with exponentially large magnetic
correlation length.

To access the region T�T�, the combination of the fRG
and mean-field approach was proposed in Ref. 12, which was
also able to study possible coexistence of magnetic and su-
perconducting order at T=0 �the magnetic order parameter
was assumed to be commensurate�. More sophisticated fRG
approach in the symmetry-broken phase13 was developed re-
cently to avoid application of the mean-field approach after
the RG flow; the application of this method was however so
far restricted by the attractive Hubbard model because of
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complicated structure of the resulting renormalization-group
equations.

In the present paper we use the fRG approach in the sym-
metric phase10,11 and perform an accurate analysis of tem-
perature dependence of susceptibilities with respect to both,
commensurate and incommensurate magnetic order, as well
as superconducting order. We propose continuation method
which allows us to study thermodynamic properties both
above and below the temperature at which the fRG flow is
stopped and extract the crossover temperature T�. This gives
us a possibility to obtain phase diagram, capturing substan-
tial part of the fluctuations of magnetic and superconducting
order parameters without introducing symmetry breaking.
Contrary to the functional renormalization-group analysis in
the symmetry broken phase,13 the presented method can be
easily generalized to study instabilities with different types
of the order parameters.

II. METHOD

We consider the 2D t-t� Hubbard model H�=H
− ��−4t��N with

H = − �
ij�

tijci�
† cj� + U�

i

ni↑ni↓, �1�

where tij = t for nn sites i, j, and tij =−t� for next-nn sites
�t , t��0� on a square lattice; for convenience we have
shifted the chemical potential � by 4t�. We employ the fRG
approach for one-particle irreducible generating functional
and choose temperature as a natural cut-off parameter as pro-
posed in Ref. 10. This choice of cutoff allows us to account
for excitations with momenta far from and close to the Fermi
surface. Neglecting the frequency dependence of interaction
vertices, the RG differential equation for the interaction ver-
tex VT�V�k1 ,k2 ,k3 ,k4� has the form10

dVT

dT
= − VT �

dLpp

dT
� VT + VT �

dLph

dT
� VT, �2�

where � is a short notation for summations over intermediate
momenta and spin, momenta ki are supposed to fulfill the
momentum-conservation law k1+k2=k3+k4

Lph,pp�k,k�� =
fT��k� − fT���k��

�k � �k�
�3�

and fT��� is the Fermi function. The upper signs in Eq. �3�
stand for the particle-hole �Lph� and the lower signs for the
particle-particle �Lpp� bubbles, respectively. Equation �2� is
solved with the initial condition VT0

�k1 ,k2 ,k3 ,k4�=U; the
initial temperature is chosen as large as T0=103t. The evolu-
tion of the vertices with decreasing temperature determines
the temperature dependence of the susceptibilities according
to10

d	m

dT
= �

k�

Rk�
m R�k�+qm

m dLph,pp�k�, � k� + qm�
dT

,

dRk
m

dT
= � �

k�

Rk�
m


m
T �k,k��

dLph,pp�k�, � k� + qm�
dT

. �4�

Here the three-point vertices Rk
m describe the propagation of

an electron in a static external field, m denotes one of the
instabilities: antiferromagnetic �AF� with qm= �� ,��, incom-
mensurate magnetic �Q� with the wave vector qm=Q, or
d-wave superconducting �dSC� with qm=0 �upper signs and
ph correspond to the magnetic instabilities, lower signs and
pp to the superconducting instability�


m
T �k,k�� = �VT�k,k�,k� + qm� m = AF or Q ,

VT�k,− k + qm,k�� m = dSC.
� �5�

The initial conditions at T0 for Eqs. �4� are Rk
m= fk and 	m

=0, where the function fk belongs to one of the irreducible
representations of the point group of the square lattice, e.g.,
fk=1 for the magnetic instabilities and fk= �cos kx
−cos ky� /A for the d-wave superconducting instability, with
a normalization coefficient A= �1 /N��kfk

2. To solve the Eqs.
�2� and �4� we discretize the momentum space in Np=48
patches using the same patching scheme as in Ref. 10. This
reduces the integrodifferential Eqs. �2� and �4� to a set of
5824 differential equations, which were solved numerically.
In the present paper we perform the renormalization-group
analysis down to the temperature TRG

min, at which vertices
reach some maximal value �we choose Vmax=18t�.

To obtain the behavior of the susceptibilities at T�TRG
min

we continue analytically obtained temperature dependence of
the inverse susceptibilities from the temperature region
above �but close to� TRG

min by polynomials of fifth to seventh
order. We identify the crossover temperature Tm

� to the re-
gime of strong correlations of the order parameter denoted
by m from the condition that the continued 	m

−1�Tm
� �=0 �we

assume that the inverse susceptibilities are almost analytic
functions of temperature in the crossover regime�. We have
verified that the obtained Tm

� essentially depends on neither
the order of polynomial, used for the fitting, nor on the fitting
range. Studying the behavior of Tm

� as a function of electron
density, interaction strength, etc. allows us to obtain the
phase diagram.

III. RESULTS

We consider first small interaction strength U=2.5t and
t�=0.1t. For this value of t� the ground state was previously
found unstable with respect to antiferromagnetic order and/or
superconductivity at the fillings close to van Hove band
filling.8–11 Temperature dependences of the inverse antiferro-
magnetic susceptibility �Q= �� ,��	 together with the results
of analytic continuation for different chemical potentials are
shown in Fig. 1. One can see that for large enough chemical
potential ���c

AF
−0.0375t ��=0 corresponds to van Hove
band filling�, the inverse antiferromagnetic susceptibility mo-
notonously decreases with decreasing temperature and van-
ishes at a certain temperature TAF

� . The value of TAF
� increases

with increasing �.
Study of susceptibilities at the incommensurate wave vec-

tors �see Fig. 2� shows that close to �c
AF �in the range
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−0.06t���−0.02t� we have TQ
� �TAF

� for some Q= �� ,�
−��. Therefore an instability with respect to incommensu-
rate, rather than a commensurate magnetic order is expected

in this interval of �. At �=�c
Q=−0.06t we obtain TQ

� =0,
which shows existence of a quantum-critical point below
half-filling. Near the quantum-critical point we find 	Q

−1�T,
which is similar to the result of the Hertz-Moriya-Millis
theory.2,14 The behavior of the inverse susceptibility with re-
spect to the d-wave superconducting order is shown in the
inset of Fig. 2. Similarly to the inverse antiferromagnetic
susceptibility, it monotonously decreases upon lowering tem-
perature, with a different temperature dependence.

The obtained phase diagram is shown in Fig. 3 and con-
tains regions of strong antiferromagnetic, incommensurate
magnetic, and superconducting fluctuations. Away from half-
filling the commensurate antiferromagnetic region is ex-
pected to be unstable toward phase separation �to hole-rich
and hole-poor regions�15 although this possibility cannot be
verified in the present approach. The obtained value of TdSC

�

monotonously increases with increasing density for n
�0.94. Deeper in the antiferromagnetic region the supercon-
ducting transition temperature is somewhat suppressed. The
origin of this suppression comes from the competition be-
tween antiferromagnetic and superconducting fluctuations.
The coexistence of superconductivity and antiferromag-
netism, which is possible in the interval 0.87�n�0.94, can-
not be verified in the present approach.

The region of the incommensurate phase obtained in Fig.
3 is much narrower, than that expected in the mean-field
approaches,16,17 which predict incommensurate instability in
the most part of the phase diagram. In fact, accurate mean-
field investigations16,18,19 show, that substantial part of in-
commensurate state in the mean-field approach is unstable
toward phase separation into commensurate and incommen-
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FIG. 1. �Color online� Temperature dependences of the inverse
antiferromagnetic susceptibility at t� / t=0.1, U=2.5t, and different
values of the chemical potential �the list of the chemical potentials
and fillings corresponds to the curves from top to bottom�. Dashed
lines show the continuation of the inverse susceptibilities to the
temperature region T�TRG

min by polynomials of 6th order.
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FIG. 2. �Color online� Temperature dependences of the inverse
magnetic susceptibility at t� / t=0.1t, U=2.5t, and the incommensu-
rate wave vector determined by a maximum Tc

Q, dashed lines show
the continuation to T�TRG

min. Dot-dashed line shows the inverse
commensurate susceptibility at �=�c

AF
−0.0375t. The inset shows
temperature dependences of the inverse susceptibility with respect
to d-wave superconducting pairing at different values of the chemi-
cal potential.
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FIG. 3. �Color online� Phase diagram at t� / t=0.1 and U=2.5t.
The temperatures of the crossover into regime with strong antifer-
romagnetic, incommensurate magnetic, and superconducting fluc-
tuations are marked by squares, triangles, and circles, respectively,
PS denotes a possibility of phase separation of the antiferromag-
netic phase. Dashed line �stars� show the temperature TRG

min, at which
the fRG flow is stopped.
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surate regions. The presence of incommensurate phases
within the renormalization-group approach was noticed pre-
viously for t�=0 in Ref. 8.

The density dependence of TAFM
� �n� and TdSC

� �n�, obtained
in Fig. 3, is similar to that of the antiferromagnetic and su-
perconducting gap components in the electronic spectrum,
AFM�n� and dSC�n�, recently obtained within the combina-
tion of functional renormalization-group approach and mean-
field theory.12 Slower decrease in TdSC

� �n� when going into
the antiferromagnetic phase in the present approach is ex-
plained by the fact that in the present approach magnetic and
superconducting fluctuations are weaker coupled in the ab-
sence of spontaneous symmetry breaking since the latter
leads to opening a gap in the electronic spectrum at the
Fermi surface. Contrary to the study of Ref. 12 we included
incommensurate phases in our analysis.

At U=3.5t we obtain similar behavior of the magnetic
and superconducting susceptibilities near the quantum-
critical point; the resulting phase diagram is shown in Fig. 4.
Compared to the case U=2.5t, the phase diagram has broader
region of the incommensurate phase. The crossover tempera-
ture into regime with strong superconducting fluctuations ap-
proximately follows that for the incommensurate fluctua-
tions, implying that the superconductivity in this case is
possibly caused by incommensurate spin fluctuations. To
clarify this point, we plot in Fig. 5 the momentum depen-
dence of the superconducting gap, obtained from the Bethe-
Salpeter analysis.20 We see that the shape of the gap, calcu-
lated for U=3.5t shows stronger deviation from the d-wave
form, than for U=2.5t, which indicates possible role of the
incommensurate fluctuations in this case.

IV. CONCLUSION

We have investigated temperature dependence of the com-
mensurate and incommensurate magnetic susceptibilities, as

well as the susceptibility with respect to the d-wave pairing
in the fRG framework, which allowed us to obtain the phase
diagrams of the Hubbard model at different U. We obtain an
intermediate region with strong incommensurate fluctuations
between the commensurate and paramagnetic regions, the
former is characterized by a wave vector Q= �� ,�−��. The
size of the incommensurate region increases with increasing
interaction strength. The tendency toward incommensurate
order near magnetic quantum phase transition comes from
the absence of nesting of the Fermi surface at finite t�. The
corresponding profile of static noninteracting spin suscepti-
bility 	0�Q� is almost flat near Q= �� ,�� �see, e.g., Ref. 21�
showing that one cannot restrict oneself to fluctuations with
only one certain Q, as assumed in HMM theory. The ob-
tained size of the incommensurate region is much narrower,
than obtained in the mean-field approaches,16,17 which is ex-
plained by existence of a phase separation in these ap-
proaches. Near the quantum-critical point the inverse mag-
netic susceptibility with respect to the preferable order
parameter shows in fRG approach almost linear temperature
dependence, similar to that in HMM theory. Note that re-
cently the incommensurate magnetic fluctuations were also
considered within the renormalization-group approach for
fermion-boson model,22 where similar results were obtained.

While the Mermin-Wagner theorem states no spontaneous
breaking of continuos symmetry in two dimensions at finite
T, we have obtained finite temperature of vanishing inverse
magnetic and superconducting susceptibilities, which is the
consequence of the one-loop approximation, considered in
Eq. �2�. As we argue in Sec. I, the obtained temperatures Tm

�

should be considered as a crossover temperature to the re-
gime with strong magnetic fluctuations and exponential in-
crease in the correlation length.
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FIG. 4. �Color online� Phase diagram at t� / t=0.1 and U=3.5t.
The notations are the same as in Fig. 3.
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FIG. 5. Angular dependence of the superconducting gap for U

=2.5t, n=0.87 �dot-dashed line� and U=3.5t, n=0.84 �solid line�,
t� / t=0.1. Dashed line shows the standard = �cos kx−cos ky� /A
dependence.

A. KATANIN PHYSICAL REVIEW B 81, 165118 �2010�

165118-4



The used method cannot be directly applied to elucidate
the type of the order parameter in the ground state since
analysis of the temperature region T�T� necessarily deals
with the strong-coupling regime of the fRG flow. To address
the problem of the ground-state properties near half-filling,
the analysis, which includes treatment of the symmetry-
broken phases12,13 is required. It is remarkable, however, that
the filling dependences of the crossover temperatures Tm

� for
the antiferromagnetic and superconducting order parameters
obtained in the present study are very similar to the filling
dependences of the corresponding ground-state order param-
eters, obtained in the combination of fRG and mean-field
approaches.12

The patching scheme invoking the projection of the ver-
tices to the Fermi surface, used in the present
renormalization-group study, may have some influence on
the obtained finite-temperature phase diagram. We expect,
however, that this influence does not modify the phase dia-
gram strongly. This is confirmed by the recent two-loop
study23 which necessarily includes corrections to the effect
of the projection of vertices and shows that the effects of
these corrections and the two-loop corrections to large extent
cancel each other.

The nonanalytical corrections to the susceptibility and
electron-paramagnon interaction vertices due to peculiar fre-
quency dependence of the electron-paramagnon interaction
may become important near quantum phase transition.3

These corrections are however expected to produce much
weaker effect than the effects of the band dispersion consid-
ered in the present paper. Investigation of the role of these
corrections in the presence of van Hove singularities has to
be performed. Application of the method considered in the
present paper to ferromagnetic instability and detail compari-
son of the results of the present approach with the mean-field
approach and quasistatic approach of Ref. 18 also has to be
performed.
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